Sangeux2015Procedure#
- class pyCGM2.Processing.Representative.representativeProcedures.Sangeux2015Procedure#
- Implementation of the representative cycle detection method as described by Sangeux in 2015. - This procedure identifies the most representative gait cycle based on the method described in Sangeux’s 2015 publication. It computes the frame-by-frame median deviation for specified kinematic outputs and selects the cycle with the smallest deviation. - Reference:
- Sangeux, M. (2015). A simple method to choose the most representative stride and detect outliers. 
 - __init__()#
 - Methods - __init__()- setData(EventContext, Label, indexes)- Populates the data for the procedure. - Sets the default data for the procedure according to Sangeux's 2015 method. - setData(EventContext: str, Label: str, indexes: List[int])#
- Populates the data for the procedure. - Parameters:
- EventContext (str) – The event context (e.g., ‘Left’ or ‘Right’). 
- Label (str) – The kinematic model output label. 
- indexes (List[int]) – The axis indexes to consider. 
 
 - Example - `python proc = Sangeux2015Procedure() proc.setData("Left", "LHipAngles", [0, 2]) # 0: flexion and 2: transverse rotation `
 - setDefaultData()#
- Sets the default data for the procedure according to Sangeux’s 2015 method. - The default kinematic model outputs and their respective axis indexes are set for both left and right contexts. 
 
