MarkerAnomalyCorrectionProcedure#

class pyCGM2.Anomaly.anomalyCorrectionProcedures.MarkerAnomalyCorrectionProcedure(markers: List | str, anomalyIndexes: List[int], plot: bool = False, **kwargs)#

Subclass of AnomalyCorrectionProcedure for correcting anomalies in marker data.

This class implements a procedure to identify and correct anomalies in marker trajectories using various parameters and methods.

m_markers#

List of marker labels or a single marker label.

Type:

Union[List[str], str]

m_anomalyIndexes#

Indices of detected anomalies in the marker data.

Type:

List[int]

_plot#

Flag to indicate if the plot should be displayed. Defaults to False.

Type:

bool

_distance_threshold#

Threshold distance for clustering anomalies. Defaults to 10.

Type:

int

__init__(markers: List | str, anomalyIndexes: List[int], plot: bool = False, **kwargs)#

Initialize the MarkerAnomalyCorrectionProcedure class with given parameters.

Parameters:
  • markers (Union[List[str], str]) – List of marker labels or a single marker label.

  • anomalyIndexes (List[int]) – List of indices where anomalies are detected in the marker data.

  • plot (bool, optional) – Flag to indicate if the plot should be displayed. Defaults to False.

Methods

__init__(markers, anomalyIndexes[, plot])

Initialize the MarkerAnomalyCorrectionProcedure class with given parameters.

run(acq, filename)

Execute the anomaly correction procedure on the given acquisition data.

run(acq: btkAcquisition, filename: str)#

Execute the anomaly correction procedure on the given acquisition data.

Parameters:
  • acq (btk.btkAcquisition) – An instance of a btk acquisition object.

  • filename (str) – The filename of the data to be processed.

Returns:

btk.btkAcquisition – The acquisition object after applying anomaly corrections.