MarkerAnomalyDetectionRollingProcedure#
- class pyCGM2.Anomaly.anomalyDetectionProcedures.MarkerAnomalyDetectionRollingProcedure(markers: List, plot: bool = False, **kwargs)#
- Marker anomaly detection using rolling statistics. - This class implements a procedure for detecting anomalies in marker trajectories using rolling statistics. - m_markers#
- List of marker labels. - Type:
- List 
 
 - _plot#
- Flag indicating whether to enable plotting. - Type:
- bool 
 
 - _aprioriError#
- A priori error on the marker trajectory. - Type:
- float 
 
 - _window#
- Size of the rolling windows. - Type:
- int 
 
 - _treshold#
- Detector threshold associated with the standard deviation. - Type:
- int 
 
 - _method#
- Method to use for rolling statistics, either ‘mean’ or ‘median’. - Type:
- str 
 
 - __init__(markers: List, plot: bool = False, **kwargs)#
- Initialize the MarkerAnomalyDetectionRollingProcedure class with given parameters. - Parameters:
- markers (List) – List of marker labels. 
- plot (bool, optional) – Flag indicating whether to enable plotting. Defaults to False. 
- **kwargs – Additional keyword arguments including aprioriError, window, treshold, and method. 
 
 
 - Methods - __init__(markers[, plot])- Initialize the MarkerAnomalyDetectionRollingProcedure class with given parameters. - getAnomaly()- Returns the detected anomaly. - run(acq, filename, options)- Run the marker anomaly detection procedure. - run(acq: btkAcquisition, filename: str, options: Dict)#
- Run the marker anomaly detection procedure. - Parameters:
- acq (btk.btkAcquisition) – A btk acquisition instance. 
- filename (str) – Filename of the data being processed. 
- options (Dict) – Additional options passed from the filter. 
 
 
 
