MarkerAnomalyDetectionRollingProcedure#

class pyCGM2.Anomaly.anomalyDetectionProcedures.MarkerAnomalyDetectionRollingProcedure(markers: List, plot: bool = False, **kwargs)#

Marker anomaly detection using rolling statistics.

This class implements a procedure for detecting anomalies in marker trajectories using rolling statistics.

m_markers#

List of marker labels.

Type:

List

_plot#

Flag indicating whether to enable plotting.

Type:

bool

_aprioriError#

A priori error on the marker trajectory.

Type:

float

_window#

Size of the rolling windows.

Type:

int

_treshold#

Detector threshold associated with the standard deviation.

Type:

int

_method#

Method to use for rolling statistics, either ‘mean’ or ‘median’.

Type:

str

__init__(markers: List, plot: bool = False, **kwargs)#

Initialize the MarkerAnomalyDetectionRollingProcedure class with given parameters.

Parameters:
  • markers (List) – List of marker labels.

  • plot (bool, optional) – Flag indicating whether to enable plotting. Defaults to False.

  • **kwargs – Additional keyword arguments including aprioriError, window, treshold, and method.

Methods

__init__(markers[, plot])

Initialize the MarkerAnomalyDetectionRollingProcedure class with given parameters.

getAnomaly()

Returns the detected anomaly.

run(acq, filename, options)

Run the marker anomaly detection procedure.

run(acq: btkAcquisition, filename: str, options: Dict)#

Run the marker anomaly detection procedure.

Parameters:
  • acq (btk.btkAcquisition) – A btk acquisition instance.

  • filename (str) – Filename of the data being processed.

  • options (Dict) – Additional options passed from the filter.