CGM References

All you ever wanted to know about the Conventional Gait Model but were afraid to ask

This was the name given to a tutorial session, All you ever wanted to know about the Conventional Gait Model but were afraid to ask given to the Gait and Clinical Movement Analysis Society in 2003 by Richard Baker. An interactive multi-media report was prepared to support this and this can be downloaded by clicking on the image below.

Conventional Gait Model CD
Click on image to access

Vicon Documentation

Much of Vicon's product documentation is actually open for anyone to download as long as you supply an e-mail address.

It should be noted that the authors of these (CGM2.i) web-pages do not necessarily agree with certain aspects of how Vicon now recommend that the model should be implemented. A particular example is the use of skin mounted markers to replace wand markers on thigh and shank.

References

Papers in italics< relate directly to CGM, others have a more general focus.

Newington papers

Davis RB, Ounpuu S, Tyburski D, Gage J (1991) A gait analysis data collection and reduction technique. Hum Mov Sci 10:575-587. doi: 10.1016/0167-9457(91)90046-Z

Ounpuu S, Gage J, Davis R (1991) Three-dimensional lower extremity joint kinetics in normal pediatric gait. J Pediatr Orthop 11:341-349. DOI: 10.1097/01241398-199105000-00012.

Ounpuu O, Davis R, Deluca P (1996) Joint kinetics: Methods, interpretation and treatment decision-making in children with cerebral palsy and myelomeningocele. Gait Posture 4:62-78. doi: 10.1016/0966-6362(95)01044-0.

Helen Hayes papers

Kadaba MP, Ramakrishnan HK, Wootten ME (1990) Measurement of lower extremity kinematics during level walking. J Orthop Res 8 (3):383-392. doi: 10.1002/jor.1100080310.

Kadaba MP, Ramakrishnan HK, Wootten ME, Gainey J, Gorton G, Cochran GV (1989) Repeatability of kinematic, kinetic, and electromyographic data in normal adult gait. J Orthop Res 7 (6):849-860. doi:10.1002/jor.1100070611.

Ramakrishnan HK, Kadaba MP (1991) On the estimation of joint kinematics during gait. J Biomech 24 (10):969-977. doi: 0021-9290(91)90175-M.

Joint angles

Chao EY (1980) Justification of triaxial goniometer for the measurement of joint rotation. J Biomech 13:989-1006. doi: 10.1016/0021-9290(80)90044-5.

Baker R (2001) Pelvic angles: a mathematically rigorous definition which is consistent with a conventional clinical understanding of the terms. Gait Posture 13 (1):1-6. doi: 10.1016/S0966-6362(00)00083-7.

Foti T, Davis RB, Davids JR, Farrell ME (2001) Assessment of methods to describe the angular position of the pelvis during gait in children with hemiplegic cerebral palsy. Gait Posture 13:270 (conference abstract in supplement).

Baker R (2011) Globographic visualisation of three dimensional joint angles. J Biomech 44 (10):1885-1891. doi: 10.1016/j.jbiomech.2011.04.031.

Repeatability studies

Charlton IW, Tate P, Smyth P, Roren L (2004) Repeatability of an optimised lower body model. Gait Posture 20 (2):213-221. doi: 10.1016/j.gaitpost.2003.09.004.

Schwartz MH, Trost JP, Wervey RA (2004) Measurement and management of errors in quantitative gait data. Gait Posture 20 (2):196-203 doi: 10.1016/j.gaitpost.2003.09.011.

McGinley JL, Baker R, Wolfe R, Morris ME (2009) The reliability of three-dimensional kinematic gait measurements: a systematic review. Gait Posture 29 (3):360-369. doi:10.1016/j.gaitpost.2008.09.003.

Pinzone O, Schwartz MH, Thomason P, Baker R (2014) The comparison of normative reference data from different gait analysis services. Gait Posture 40 (2):286-290. doi: 10.1016/j.gaitpost.2014.03.185.

Inverse dynamics

Dempster W (1955) Space requirements of the seated operator (WADC Technical Report :55-159). Wright-Patterson Airforce Base, OH. copy of report.

Clauser C, McConville J, Young J (1969) Weight volume and centre of mass of segments of the human body (AMRL Technical Report). Wright-Patterson Air Force Base, OH. copy of report.

Hinrichs RN (1985) Regression equations to predict segmental moments of inertia from anthropometric measurements: an extension of the data of Chandler et al. (1975). J Biomech 18 (8):621-624. doi: 10.1016/0021-9290(85)90016-8.

Pearsall DJ, Costigan PA (1999) The effect of segment parameter error on gait analysis results. Gait Posture 9 (3):173-183. doi: doi: 10.1016/S0966-6362(99)00011-9.

Rao G, Amarantini D, Berton E, Favier D (2006) Influence of body segments' parameters estimation models on inverse dynamics solutions during gait. J Biomech 39 (8):1531-1536. doi: 10.1016/j.jbiomech.2005.04.014.

Reinbolt JA, Haftka RT, Chmielewski TL, Fregly BJ (2007) Are patient-specific joint and inertial parameters necessary for accurate inverse dynamics analyses of gait? IEEE Trans Biomed Eng 54 (5):782-793. doi: 10.1109/TBME.2006.889187.

Pinzone O, Schwartz MH, Baker R (2016) Comprehensive non-dimensional normalization of gait data. Gait Posture 44:68-73. doi: 10.1016/j.gaitpost.2015.11.013.

Dynamic calibration of knee joint axis

Baker R, Finney L, Orr J (1999) A new approach to determine the hip rotations profile from clinical gait analysis data. Hum Mov Sci 18:655-667. doi: 10.1016/S0167-9457(99)00027-5.

Schwartz MH, Rozumalski A (2005) A new method for estimating joint parameters from motion data. J Biomech 38 (1):107-116. doi: 10.1016/j.jbiomech.2004.03.009.

Ehrig RM, Taylor WR, Duda GN, Heller MO (2007) A survey of formal methods for determining functional joint axes. J Biomech 40 (10):2150-2157. doi: 10.1016/j.jbiomech.2006.10.026.

Passmore E, Sangeux M (2016) Defining the medial-lateral axis of an anatomical femur coordinate system using freehand 3D ultrasound imaging. Gait Posture 45:211-216. doi: 10.1016/j.gaitpost.2016.02.006.

Sauret C, Pillet H, Skalli W, Sangeux M (2016) On the use of knee functional calibration to determine the medio-lateral axis of the femur in gait analysis: Comparison with EOS biplanar radiographs as reference. Gait Posture 50:180-184. doi: 10.1016/j.gaitpost.2016.09.008.

Dynamic calibration of hip joint centre

Leardini A, Cappozzo A, Catani F, Toksvig-Larsen S, Petitto A, Sforza V, Cassanelli G, Giannini S (1999) Validation of a functional method for the estimation of hip joint centre location. J Biomech 32 (1):99-103. doi: 10.1016/S0021-9290(98)00148-1.

Hicks JL, Richards JG (2005) Clinical applicability of using spherical fitting to find hip joint centers. Gait Posture 22 (2):138-145. doi: 10.1016/j.gaitpost.2004.08.004.

Ehrig RM, Taylor WR, Duda GN, Heller MO (2006) A survey of formal methods for determining the centre of rotation of ball joints. J Biomech 39 (15):2798-2809. doi: 10.1016/j.jbiomech.2005.10.002.

Harrington ME, Zavatsky AB, Lawson SE, Yuan Z, Theologis TN (2007) Prediction of the hip joint centre in adults, children, and patients with cerebral palsy based on magnetic resonance imaging. J Biomech 40 (3):595-602. doi: 10.1016/j.jbiomech.2006.02.003.

Peters A, Baker R, Sangeux M (2010) Validation of 3-D freehand ultrasound for the determination of the hip joint centre. Gait Posture 31:530-532. doi: 10.1016/j.gaitpost.2010.01.014.

Sangeux M, Peters A, Baker R (2011) Hip joint centre localization: Evaluation on normal subjects in the context of gait analysis. Gait Posture 34 (3):324-328. doi: 10.1016/j.gaitpost.2011.05.019.

Peters A, Baker R, Morris ME, Sangeux M (2012) A comparison of hip joint centre localisation techniques with 3-DUS for clinical gait analysis in children with cerebral palsy. Gait Posture 36 (2):282-286. doi: 10.1016/j.gaitpost.2012.03.011.

Pillet H, Sangeux M, Hausselle J, El Rachkidi R, Skalli W (2014) A reference method for the evaluation of femoral head joint center location technique based on external markers. Gait Posture 39 (1):655-658. doi: 10.1016/j.gaitpost.2013.08.020.

Sangeux M, Pillet H, Skalli W (2014) Which method of hip joint centre localisation should be used in gait analysis? Gait Posture 40 (1):20-25. doi: 10.1016/j.gaitpost.2014.01.024.

Soft tissue artefact

Leardini A, Chiari L, Della Croce U, Cappozzo A (2005) Human movement analysis using stereophotogrammetry. Part 3. Soft tissue artifact assessment and compensation. Gait Posture 21 (2):212-225. doi: 10.1016/j.gaitpost.2004.05.002.

Taylor WR, Ehrig RM, Duda GN, Schell H, Seebeck P, Heller MO (2005) On the influence of soft tissue coverage in the determination of bone kinematics using skin markers. J Orthop Res 23 (4):726-734. doi: 10.1016/j.orthres.2005.02.006.

Peters A, Sangeux M, Morris ME, Baker R (2009) Determination of the optimal locations of surface-mounted markers on the tibial segment. Gait Posture 29 (1):42-48. doi: 10.1016/j.gaitpost.2008.06.007

Tsai T-Y, Lu T-W, Kuo M-Y, Hsu H-C (2009) Quantification of three-dimensional movement of skin markers realtive to the underlying bones during functional activities. Biomedical Engineering: Applications, Basis and Communications 21 (3):223-232. doi: 10.4015/S1016237209001283.

Akbarshahi M, Schache AG, Fernandez JW, Baker R, Banks S, Pandy MG (2010) Non-invasive assessment of soft-tissue artifact and its effect on knee joint kinematics during functional activity. J Biomech 43 (7):1292-1301. doi: 10.1016/j.jbiomech.2010.01.002.

Cockroft J, Louw QA, Baker R (2016) Proximal placement of lateral thigh skin markers reduces soft tissue artefact during normal gait using the Conventional Gait Model. Computer methods in Biomechanics and Biomedical Engineering 19 (14):1497-1504. doi: 10.1080/10255842.2016.1157865.

Kinematic fitting

Lu TW, O'Connor JJ (1999) Bone position estimation from skin marker co-ordinates using global optimisation with joint constraints. J Biomech 32 (2):129-134. doi: 10.1016/S0021-9290(98)00158-4.

Other models

Cappozzo A, Catani F, Croce UD, Leardini A (1995) Position and orientation in space of bones during movement: anatomical frame definition and determination. Clin Biomech (Bristol, Avon) 10 (4):171-178. doi: 10.1016/0268-0033(95)91394-T.

Leardini A, Sawacha Z, Paolini G, Ingrosso S, Nativo R, Benedetti MG (2007) A new anatomically based protocol for gait analysis in children. Gait Posture 26 (4):560-571. doi: 10.1016/j.gaitpost.2006.12.018.

Seth A, Sherman M, Reinbolt JA, Delp SL (2011) OpenSim: a musculoskeletal modeling and simulation framework for in silico investigations and exchange. Procedia IUTAM 2 (0):212-232. doi: 10.1016/j.piutam.2011.04.021.